Model 5 – Dynamic Aggregate Demand – Aggregate Supply

Mankiw, Macroeconomics, Eighth Edition, Chapter 15

- 1. IS curve becomes: $Y(t) = Y^p(t) \alpha^*(r(t) \rho) + \epsilon(t)$ where ϵ is distributed normally
- 2. Fisher Equation: $r(t) = i(t) \pi^{e}(t,t+1)$ Where $\pi^{e}(t,t+1)$ is expected inflation rate from t to t + 1
- 3. Phillips Curve: $\pi(t) = \pi^{e}(t-1,t) + \Phi^{*}(Y(t) Y^{p}(t)) + v(t)$
- 4. Inflation Expectations: $\pi^{e}(t,t+1) = \pi(t-1,t)$ or $\pi(t)$ Naïve expectations
- 5. Monetary Policy Rule: $i(t) = \pi(t) + \rho + \theta \pi^*(\pi(t) \pi^*) + \theta_v^*(Y(t) Y^p(t))$
 - If $\theta_v = 0$ then only inflation matters;
 - If $\theta_{\pi} = 0$ then only output matters

Dynamic Aggregate Demand:

$$\begin{split} Y(t) &= Y^p(t) - [\alpha^*\theta_\pi/(1+\alpha^*\theta_y)]^*(\pi(t)-\pi(t)^*) + [1/(1+\alpha^*\theta_y)]^*\epsilon(t) \\ with slope &\Delta\pi/\Delta Y = - \ (\underline{1+\alpha^*\theta_y}) \\ &\alpha^*\theta_\pi \end{split}$$

Dynamic Aggregate Supply:

$$\pi(t)=\pi^e(t\text{-}1,t)+\Phi^*(Y(t)\text{-}Y^p(t))+v(t)\ \ \text{where}\ \pi^e(t\text{-}1,t)=\pi\ (t\text{-}1)$$
 with slope $\Delta\pi/\Delta Y=\Phi$

Exogenous Variables: Y^p , ρ , $\epsilon(t)$, v(t), $\pi(t)^*$